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Abstrac:t-A closed-form solution is derived for the large plastic deformation of a polygonal
frame loaded by a uniform internal pressure. The material of the frame is assumed to be rigid.
pet1ectly plastic, and the effects of large geometric changes are included. A comparison is made
between theoretical results and available experimental data for a pressurized hexagonal tube.

INTRODUCTION

Long, thin·walled, polygonal tubes have numerous uses in nuclear reactors and their
associated components, such as for fuel subassembly cans, control rod shrouds, in
strumentation shrouds, and in-core experiment containments. In addition, polygonal
tubes have a potential application as energy-absorbing devices for alleviating severe
pressure surges in reactor piping systems.

The purpose of this study is to derive a closed-form solution for the large plastic
distortion of a thin-walled polygonal tube subjected to quasi-static internal pressuri
zation, Le. the loading is slow enough that inertia effects can be neglected. The material
of the tube is assumed to be rigid, perfectly plastic. The effect oflarge geometry changes
on redistribution of the loading is included in the analysis. The closed-form solution is
useful for providing design estimates for the performance of polygonal tubes subjected
to severe loadings and for providing a building block in the development of fluid
structure interaction analyses. It may also be applicable to the validation of finite
element computer programs which have a large displacement, plastic deformation ca
pability.

A comparison of calculated results with experimental data for a pressurized reactor
fuel subassembly can is presented, following the derivation of the theoretical solution.
Since the subassembly can is made of a material which strain-hardens considerably,
the comparison provides a means of evaluating the applicability ofthe perfect·plasticity
assumption.

Finally, an approximate solution, corresponding to a simpler displacement field, is
given in the Appendix. The approximate solution gives a good prediction of the de
formed shape of the polygon, but violates the yield condition at some points.

STATEMENT OF PROBLEM

Consider a long, thin-walled tube which has a cross section that is a J-sided, regular
polygon and which is loaded by a uniform internal pressure P. The effect of axial
variation of the deflection is neglected compared with the large distortion of the cross
section, so the problem is equivalent to finding the plastic deformation of a J-sided
polygonal frame, shown in Fig. 1for the case J =4. The wall thickness is H, the length
of a side of the polygon is L, and the central angle subtended by a side is 213. Thus,

13 = Tr/J. (I)

The polygonal frame is assumed to be made of a rigid, perfectly plastic material
having yield stress O'y and satisfying the yield condition
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t Work performed under the auspices of the U.S. Department of Energy.
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Fig. I. Polygonal frame, J = 4.

Here Nand M are, respectively, the resultant membrane force per unit axial length
and the bending moment per unit axial length of the original tube; No and Moare defined
by

No = (TyH, M
_ (TyH2

o - 4 . (3)

The equality in (2) holds at points where plastic hinges form in the deformed polygon,
and the inequality holds at points that remain rigid. The plastic flow rule states that,
during plastic flow, the generalized strain rate vector has the direction of the exterior
normal to the yield surface at the considered generalized stress point[l). Let E and e
be the stretch and angle change at a plastic hinge; then

dE/de = af / ~
aN aM

NH
+
- 2No '

(4)

where the sign depends on the sign of M.
The polygon remains undeformed for pressures below the yield pressure Py • At P

= Py , plastic hinges develop at the comers and midpoints ofthe sides. As the pressure
is increased above Py , the comer hinges remain fixed, but each center hinge splits,
resulting in two hinges that move outward. Figure 2 shows a typical half-side, with the
corner hinge at A and the other hinge having moved from its initial position at B to its
final position at s = A, where s is the curvilinear coordinate measured along the side.
The half-side is divided into a rotating rigid straight portion and a curved portion that
is developed by the moving hinge as the pressure is increased. The hinge conditions
are thus

f = 0 at s = L12,

f = 0, df = 0 at s = A,
ds

f < 0 for 0 :5 S < A and A < S < Ll2.

(5)

Figure 3 is a free-body diagram of an undeformed and deformed half-side. The co
ordinates ~, T] are measured from the center of the side and define the location of the

Fig. 2. Half-side of deformed frame.
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Fig. 3. Free-body diagram.
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hinge at A. The symmetry of the polygon requires that the deflection of the corner A
and midside B be radial and that the resultant forces Q... and QB be perpendicular to
OA and OB, respectively. Therefore,

N... = Q... cos(~ - 6),

NB = QB,

where 6 is the angle of rotation of the straight portion.
The equilibrium equations for the half-side are

(6)

P~ + P (~ - A) cos 6 - Q... sin ~ = 0,

- QB + PT] + P (~ - A) sin 6 + Q... cos ~ = 0, (7)

MB - M... + QBT] - Q... (~ - A) sin (~ - 6) + ~ [ (~ - A)2 - e - T]2] = 0.

where I is the length of the side of the deformed polygon.
In the region A :is; S :is; 112, we have, using eqns (6) and (7),

cos(~ - 6) [ (I ) ]
N(s) = P sin ~ ~ + '2 - A cos 6 •

sin(~ - 6) [ (I ) ]
M(s) = P sin ~ ~ + '2 - A cos 6

(I ) P (I )2x '2 - s - '2 '2 - s + M....

(8)

The difference between the lengths of the deformed and undeformed sides will be
neglected in the equilibrium equations in order that a closed-form solution may be
obtained. This assumption is reasonable because the results show that the stretch in a
side is small compared to its original length. However, the plastic stretch is readily
incorporated into the geometric compatibility equations for the deformed shape. Since
N A = N... , the magnitude ofdE/d6 is the same at both hinges by eqn (4); since the side
is rigid between the hinges, the instantaneous magnitude of the angle change is the
same at each of them. Consequently the instantaneous magnitude of dE is the same at
both hinges, and the accumulated stretch in the region swept through by the moving
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Fig. 4. Nomenclature for curved portion of half-side.

hinge is equal to the total stretch accumulated at the comer. The total stretch !::J. of a
half-side is thus equal to 2e and is found from eqn (4) to be

(9)

where N A varies as the pressure is increased from Py to its final value P. If we let 8A

and 8B denote the outward radial displacement of the corner and midside, geometric
compatibility then requires that

8A sin 13 ;:: (~ - A + !::J.) cos e + S - ~ ,

8B ;:: 8A cos 13 + (~ - A + !::J.) sin e + Tj.

(10)

Figure 4 shows the curved portion of the side generated as the pressure is increased
from Py to P. At an intermediate pressure the hinge is at point s with coordinates x,
y. The slope of the curved side at s is tan 4>. Differential geometry then gives

dx ds
d4> ;:: d4> cos 4>,

dy ds.
d4> ;:: d4> sm 4>.

(11)

Since bending occurs only at the hinges, the previously curved part of the side does
not change shape as the hinge moves towards its final position A. Consequently, de
termining sand 4> as functions of intermediate pressure generates the shape of the
curved part of the side.

SOLUTION

Using eqns (2) and (8), the hinge condition df/ds ;:: 0 at s ;:: A implies that

s ;:: (~ - A) sin ecos(13 - e).

From the first of eqns (8), we have

(12)

(13)
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Since f = 0 at both s = 0 and s = A and since NA. = N A , then IMA. I = IMA Iand
the second part of eqn (8) gives

(14)

The yield condition at a hinge therefore implies

(15)

It is more convenient to consider 6 to be the independent variable rather than P. Con
.sequently, eqn (15) is solved for P to give

P

U
y = 1 + {I + 16 [H ~t~2~ 9)f} 1/2 •

(16)

At the yield pressure Py , both eand A are zero. Therefore, Py for a J-sided polygon
is

Py(J) 8H2

-;; = L 2 + L(L2 + 16H2 cot2 ~)I/2 •
(17)

Consider an equivalent circular ring which has the same wall thickness and perimeter
as the polygonal frame; let its radius be Ro and its yield pressure be PyO. Using (1),

and

From eqns (17) and (19),

JL L
Ro = - =-

27T 2~

PyO = Lim Py(J).
J_oc

(18)

(19)

(20)

The hinge location A remains to be determined as a function of 9. The relationship
(12) between ~, A, and eholds between x, s, and 4» (Fig. 4) at a lower pressure; i.e.

x= (i - s) sin 4» cot(~ - 4»). (21)

Substitution into the first of eqns (11) and integration over the whole curve then gives

fA ds 1 (8 [ sin 4» ]
Jo -L-- = sin 13 Jo cos ef> cos(13 - 4») + sin(13 _ 9) def>.

--s
2

(22)



300 C. K. YOUNGDAHL

The solution of eqn (22) for A as a function of 8 is

A = !::. [I _ sin(13 - 8) -G(9)J
2 . Q e ,

sm t-'

where

G(8) == sin 8 cos(13 -. e) - 8 cos 13 .
2 sm f3

The substitution of eqn (23) into eqn (16) gives P as a function of e,

(23)

(24)

8avH2 sin2 f3 e - 2G(9)
P(8) = .

L 2 sin2 (f3 - e) + L[L2 sin4 (13 - e) + 16H2 sin2 f3 cos2(f3 - 8) e2G(6l]1/2 .

(25)

To complete the solution, we use eqns (9), (11), (12) and (23) to obtain ~, Tj and !l
as functions of 8:

l: _ L sin e cos(13 - e) -G(9)

., - 2 sin f3 e ,

L 19

Tj = 2 .... Q [sin(f3 - 4» cos(f3 - 4» cos 4> + sin 4>] sin 4> e- G (<!» d4>,
sm~ t-' 0

L 1A!l = . P(4)) cos(f3 - 4» e- G (<!» d4>.
2ay sm f3 0

The corner and midside displacements can then be calculated from eqn (10).
The membrane forces and bending moments at the hinges and midside are

N (8) = N (8) = P(8)L cos(13 - 8) - G(9)
A A 2' Q e,sm t-'

M(8) = _M(8) = P(8) [L sin(f3 - e) _ G(9)] 2
A A 16 sin f3 e ,

NA(8)
N B (8) = --8 + P(8HTj(8) - ~(8) tan 8J,

cos

MB (8) = M A (8) - NB(8)Tj(8) + iP(e)[~2(8) + Tj2(e)].

The force and moment distributions for 0 ~ s ~ A, i.e. 0 ~ 4> ~ 8, are

(26)

(27)

N(8, s) = N B (8) cos 4> + P(6)[x(4» sin 4> - Y(4)) cos 4>], (28)

M(8, s) = MB(e) + N B(e)Y(4» - iP(6)[x2(4» + y2(4))]

where s, x and yare related to 4> as A, ~ and Tj are related to 6 [see eqns (23) and (26)].
The distributions for A ~ s ~ L/2 are

N(8, s) = N A (6),

M(e, s) = MA - iP(6)[s - A(e)]2.

(29)

As 8 increases, MB decreases and eventually changes sign. If the expressions for
NB and MB are substituted into eqn (2), a value of6, denoted by 8m , can be determined
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which satisfies the yield condition. A new hinge then forms at the midside. For P >
Pm, where Pm = P(6m), this new hinge also moves along the previously deformed side,
and the solution derived in this section is no longer valid. However, the results in the
next section will show that A is close to the corner and the polygon is nearly circular
at P = Pm.

RESULTS

Results are shown in this section for RolH = 20, which, from eqn (19), corresponds
to

(30)

In Fig. 5, 6 is drawn as a function of PIPyo for various polygonal frames, as computed
from eqn (25). The circled points correspond to Pm, and the dashed portions of the
curves are the approximate solution discussed in the Appendix. Near P = Py , the
angular deformation changes rapidly for small increases in P ifJ is small, but for larger
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Fig. 5. Angle eas a function of pressure for J-sided polygons.
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Fig. 6. Hinge location A as a function of pressure for J-sided polygons.
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8 A

Fig. 7. Deformed triangular frame for P = 1.5 Py and P = Pm = 14.3 Py •

J more of the load is balanced by the membrane force. Since A. is known as a function
of e, eqn (23) can be combined with the above result to give hinge location as a function
of pressure, as shown in Fig. 6.

Figure 7 shows the deformed shape of a triangular frame for P = 1.5 Py and P =
Pm = 14.3 Py • The moving hinges are near the corners for the larger load and the

Fig. 8. Deformed square frame for P = 1.5 Py and P = Pm = 10.8 Py •
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Fig. 9. Comer and midside locations as functions of pressure for triangular frame.
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Fig. 10. Bending moment and membrane force distribution in triangular frame for 0 = 30° and
e = Om = 47.96°.

deformed shape is nearly circular. The deformation of a square frame is shown in Fig.
8.

The radial locations of the comer and midside of the triangular frame are plotted in
Fig. 9 as a function of PIPy • We see that as P increases both radii approach a value
just slightly larger than Ro because of the small stretch in the side (about 0.7% at Pm).

Figure 10 shows the bending moment and membrane force distribution in the half·
side of a triangular frame when a = 30° and when a = am = 47.96°. The dots indicate
the locations of the hinges, and the dashed curves are for the approximate solution
presented in the Appendix. Although N varies monotonically for s between 0 and A,
the variation is so small as to be unnoticeable. In particular, NB = 0.1562 and N A =
0.1544 for 8 = 30°, and NB = 0.6604 and N A = 0.6461 for 8 = 8m • Consistent with
eqns (5), the magnitude of M is a maximum at A and Ll2 and has zero slope at the
moving hinge. A new hinge is just beginning to form at s = 0 for a = 8m •

Figure 11 shows the yield condition and f at both the midside and the moving hinge
for P = kPy , with k = 1,2, ... 13, 14.3; fA is the mirror image of fA in the N axis
and moves along the yield curve as P increases. (The triangles belon. to the approximate
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Fig. 11. Yield function f(M, N) at hinge and comer for triangular frame.

solution discussed later.) We see that the midside is rigid for P > Py until a new hinge
with opposite sign forms there at P = 14.3 Py = Pm.

COMPARISON WITH EXPERIMENT

SRI International pressurized reactor subassembly cans made of several composi
tions of stainless steel[2]. The cans are long, thin-walled tubes with hexagonal cross
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Fig. 12. Comparison of theoretical and experimental deformation of hexagonal tube.
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sections and so satisfy the geometrical assumptions of this article. However, stainless
steel significantly strain hardens, and the assumption here of perfect plasticity, there
fore, is not realistic for the can material. From the range of measured strains in the
subassembly cans, a value of cry = 60,000 psi would appear to be a reasonable value
of yield stress for an equivalent perfectly plastic material to model the 'stainless steel
used in the experiment discussed here. Figure 12 shows changes in radius with pressure
at the comers and midside for both the theoretical solution and one of the experiments.
The stainless steel does not have a distinct yield point and so the measured deformation
at B changes less abruptly at low pressures than the theory predicts. Strain hardening
spreads the plastic hinges into plastic zones, so less angle change at the comers would
be expected in the experiment. Because the comers then do not pull in as much, more
of the load is equilibrated by the membrane force and more stretching of the sides
occurs at high pressures. The agreement at high pressures would likely be better if the
tube were made of a material with less strain hardening, such as mild steel.

Acknowledgment-The author wishes to thank the reviewer for his valuable suggestions for improving the
paper.

REFERENCES

1. W. Prager, An Introduction to Plasticity. Addison-Wesley, Reading, Mass. (1959).
2. D. J. Caaliostro and C. M. Romander, Experiments on the Response ofHexagonal Subassembly Ducts

to Radial Loads. SRI Project PYD-I960, Third Interim Report, December (1975).

APPENDIX
The curved part of the deformed polygonal frame is very close to a circular arc with radius Ro. Assuming
this is the exact deflection shape gives a somewhat simpler solution than obtained previously, which may
be more convenient for incorporation into complex analyses such as for fluid-structure interaction. However,
the approximate solution violates the yield condition on part of the side of the polygon.

Denoting the approximate solution by asterisked variables, we will put

L8
A* "" Ro8 "" 21) •

~* = .f. sin 8... 21) •

L
'lJ* = 21) (I - cos 8).

Br-------------7I'-----..::::.....~

"
J • 3
Ro' H• 20
p. p.

- EXACT
---APPROXIMATE

Fig. 13. Deformed half-side of triangular frame for approximate and exact solutions.

(31)
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Substitution into eqns (5-8) then gives

* _ ,8(JyH2~2 sin ~

P (8) - L2F1 + L[L2F~ + 16H2~2F2]112'

where

(32)

(33)F j 2(~ - 8) sin 6 sin«(3 - 6) + (~ - 6)2 sin(~ - 28),

F2 COS2(~ - 6)[sin 6 + «(3 - 6) cos 6F.

The plot of eqn (32) is indistinguishable from that of eqn (25) in Fig. 5 and can be extended on to 6 = (3
when the moving hinge approaches the corner.

Figure 13 shows a comparison between the approximate and exact deflection shapes for the half-side of
the triangular frame with P = p* = 14.3 Py • It is apparent that the exact shape is very close to a circular
arc. However, as evidenced in Figs. 10 and 11, the approximate solution, denoted by the dashed lines, violates
the yield condition in the deformed segment.

Consequently, the approximate solution gives a good estimate of the variations of the deflection shape
and membrane force with pressure, but is considerably in error in predicting the bending moment distribution
and violates the yield condition. .


